If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+20x+49=0
a = -4; b = 20; c = +49;
Δ = b2-4ac
Δ = 202-4·(-4)·49
Δ = 1184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1184}=\sqrt{16*74}=\sqrt{16}*\sqrt{74}=4\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{74}}{2*-4}=\frac{-20-4\sqrt{74}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{74}}{2*-4}=\frac{-20+4\sqrt{74}}{-8} $
| 6x+25=64 | | r/2+9=30 | | (-2(-7x+5))-7=40-5x | | 11x+2=5x+21 | | 3u-15=21 | | -1/4(x+2)-5=x | | 4w+8=40 | | 117-w=161 | | -1/4(x+2)=5=x | | 210=51-x | | 178-y=234 | | 123-y=207 | | (4x-1)^2=(2x+1)^2 | | 155=21-x | | 7x-20=2x+15 | | 6+31=8t-14 | | 2x+23+3x=57 | | 1/(1-0.95x)=2 | | 13p+15=-11 | | 3m/5=-18 | | 3÷5x=9 5+x=-4 | | 8x+8=12x-4 | | -8z=120-2z | | 10+3y-5=2y+2-y | | 5+x=-4 | | 80°+76°+x°+x°=360 | | -7p/2=3p | | 5+7a=4a~13 | | 8a/3=-56 | | -18x+203=59-6x | | 9y+4+4y+7=76 | | 2+2x/4=6x/4 |